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I. Introduction

The goal of the research is to apply analytical

approximation techniques to the problem of practically evaluating

fault-tolerant control system reliability and availability where

the system behavior is modelled by a finite state Markov or
semi-Markov process. The key property of fault-tolerant control

systems to be exploited is that component failures tend to occur

very infrequently relative to decisions by the redundancy

management (RM) system, which include false detection alarms,

detections of faults, identification of faulty components and

rejection of false alarms. This property tends to cause the

resulting Markovian model to exhibit behavior in two (or more)

distinct time scales: a fast time scale for the RM decisions and

a slow time scale for the component failures. Of interest for

reliability and availability studies is usually the behavior that

occurs over durations intermediate to the two time scales. Under

certain conditions, this behavior can be approximated by an

aggregated model whose aggregated state classes reflect primarily

the number of component failures. Therefore, the RM decision

behavior is considered to have reached steady state

instantaneously in the time scale of interest. The advantage of

an aggregated model is that it includes only a fraction of the

number of states in the original model. It is therefore much

more amenable to practical computation than the original model,

which is computationally intractable even for simple systems.

2

r' t,

VA. . .. ..
V I 7 I



The approach to developing simplified models is based

primarily on the approximate aggregation theory developed in

S[1,2]. The primary result from this development is summarized by

the following theorem:

Theorem: Given a perturbed finite-state semi-Markov process

z (t) whose transition operator elements PE j(t) have the

following dependence on E:

i (t) = (pij - Eqij)hij(t/E) if i, jEEk (la)

: Eqi hi (t/E) if iEEk, lEEk (Ib)

with P.. I 1 and where pi and qi are of order 1 and
jc E 13 1

where te set of classes [k is disjoint and

exhaustive. If the Markov chains defined by the pij's

within a single class Ek  represent an ergodic Markov process

with stationary state probability distribution { i .(k)I for

each k(lk~m), then:
lim.
l0 Prob {sojourn time from class Ek to class Er:t}

1kr e( - ek t ) (2)

(k)(k)where: = [ , ( .i] -. (k) (3)
whe e: kr Z -7 -a ij qij ] -

lEEk jE icjE jE I
k  r k k

k = 7 ) q(k) [ Z q. (k) 7 PijTi (4)
iEk JEk iEk j Ek

T P T. (5)
)JEk

0

and where xii is the mean holding time for the holding time
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density hij(t).

The proof of this theorem appears in [1] and some extensions and

related results appear in [2].

Some remarks on the theorem are in order:

1. Models of fault-tolerant systems have structures similar

to the conditions of the theorem in that the Pij

(unperturbed within-class embedded transition

probabilities) are of order l and the embedded transition ,

probabilities out of each class are E-dependent and

usually linear in E where E is related directly to the

component failure rates. (However, see Remarks 3 and 4.)

2. The usefulness of the theorem stems from the fact that it

provides an approximate description of the slow

class-to-class transition dynamics over a time duration

on the order of I/E in terms of a finite state Markov

process with only as many states as there are classes.

These three properties (durations of order I/E, small

number of states and standard Markovian behavior) are all

desirable for fault-tolerant system evaluation

calculations. Once the approximate interclass behavior

is approximated in this way, the individual state

probabilities can be approximated as:

Prob [occupy state i at time t}

i(k) * Prob {occupy class k at time t} (6)

where the approximate model provides the probability on

4
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the right-hand side.

3. Unfortunately, fault-tolerant control system models tend

not to have ergodic classes Ek. In particular, systems

which do not include mechanisms for on-line recovery of

components declared previously to have failed yield

evaluation models that include trapping states and

transient states in most of the classes when E is zero.

For example, consider a system whose RM logic calls for

permanent shutdown of a component upon declaration of its

failure and which is subject to false alarms. One of the

states in a model for such a system is characterized by

all of the components working save one which has been

shutdown by a false alarm. Assuming zero probability for

component failures (i.e. E=O) and neglecting further

false alarms, this state becomes a trapping state in the

same class as the "all working" state. Therefore, the

"all working" state is a transient state and the class is

not ergodic for E=O.

4. Also unfortunately, the holding time density functions

appearing in models of fault-tolerant systems tend not to

have the dependence on E exhibited in Eqn. (1). Consider

the meaning of hi (t/E) for very small E: If hi (t) is a

typical unimodular density over [0,-] (such as

exponential, Erlang, gamma) with mean and maximum

location both of order 1 in t, then h. (t/E) approaches
13
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an impulse function in t as E -0. In fault-tolerant

system models, E represents the component failure rate

while hij(t) is typically determined by the distribution

of the time to decision for the appropriate RM test

(particularly when i and j are both elements of the same

class). Thus, hi.(t) is typically not dependent on the

failure rate although it does typically have its mean and

its maximum location at small values of t relative to the

length of a mission.

Our research to the present has been directed toward

applying the results of the Theorem stated above to two

typical fault-tolerant control system models. In light of

Remarks 3 and 4, much of our recent work has been directed

toward modifications of the results of the Theorem and

investigation of the effects of violating some of the

conditions stated in the Theorem. The next Section briefly

describes our progress in these areas.

II. Progress Summary

Our work began with a careful examination of [1] and [2]

with regard to the import of the ergodic assumption discussed

in Remark 3 above. This examination revealed that the proof

of the Theorem above depended explicitly on the existence for

each class Ek of the inverse operator [l-Pk Ik] where:

6



I : identity operator

P : transition probability operator for the embeddedk

Markov process describing transitions within class

Ek after E is set to zero (hence eliminating

out-of-class transitions)

k : steady state transition operator associated with Pk'

if it exists

lim 1 n i
n n iE k otherwise

As is stated in [2], if Ek is an ergodic class when E = 0 then

[I - P + k] is guaranteed to exist. Hence, the ergodicity

of Ek is a sufficient condition for the existence of

[I - Pk + k ]  which in turn is a sufficient condition for

the Theorem. However, ergodicity is not necessary for the

existence of the inverse operator. As a particular example,

consider a class consisting of all transient states except for

a single trapping state where all of the transitions exiting

the transient states enter the trapping state. Then P

contains a row of ones in the position of the trapping state

and is otherwise filled with zeroes. Then 7 k has the same

form. Therefore, [I - P k +  k -1 = [I ] -  = I, hence the

inverse operator exists. We have therefore proven the

following:

Proposition: The results of the Theorem above are true if

the Markov chain defined by the pij's for classes {EkI

has either of the following properties: 1) it is ergodic

7



with stationary state probability distribution {Ti M

(independent of the initial condition), or 2) the inverse

operator [I - Pk + 7k] exists and a valid steady state

probability distribution { M cu

Tk operating upon it reproduces it (and it may be

dependent on the initial condition, which must then be

known).

The fundamental importance of this proposition to

fault-tolerant system evaluation is clear from Remark 3.

Furthermore, it is relatively straightforward to numerically

calculate rk from P and to compute 171(k from ik and the
kk k

given initial condition. It is then possible to numerically

evaluate the eigenvalues (or singular values) of I - Pk + k'

which leads finally to an indication that the approximate

results of the Theorem hold (and also produces the required

steady state distribution {i k)i for each k) or to an

indication that the results of the Theorem do not hold.

We unen proceeded to construct some typical models of

fault-tolerant systems in order to test the validity of the

results and to examine the conditions under which the

approximation fails. Two models of fault tolerant system

behaviour have been developed by Wereley. Both are based on

the single-component dual-redundant (SCDR) system. This is

the simplest fault tolerant configuration that may be

modelled. It consists of a primary component and a backup

8



component with an independent failure detection test

monitoring each. The RM logic is simply to use the primary

component until its test indicates that it has failed at which

time a switch is made to the backup unless it is already

indicated to be failed.

The first model is assumed to have a sequential detection

test for each component with decision time mass functions of

the hypergeometric type. No recovery from false alarms is

permitted. This particular model has seven states (it should

be noted that the 10-JAN-85 report stated incorrectly that

this was a four state model) which decompose into three

distinct classes as the probability of component failure in a

single time step tends to zero. Each of the three classes is

non-ergodic due to the existence of a trapping state in each.

This model is simple enough that analytical transform

techniques, as well as numerical computations, may be used to

analyze its behaviour.

The second model is also assumed to have a sequential

fault Jetection test for each component with hypergeometric

decision time mass functions. However, this model includes a

false alarm recovery (FAR) test which is triggered by a

detection indication. This FAR test is simply the same

sequential test as for detection operating on the indicated

component (that is, the component that was indicated as failed

by the fault detection logic). The model has nine states

9



which again decompose into three distinct classes as the

probability of failure tends t~o zero. Each of the classes is

now ergodic due to the presence of the FAR test. An attempt

is underway to analyze this model using analytical transform

techniques using the MACSYMA symbolic manipulation software

package. However, the large number of states may make

symbolic manipulation impractical. In that case, numerical

computations will be used to determine the behaviour of this

model.

A FORTRAN program has been developed to numerically

describe the behaviour of the two models. Work is currently

progressing on both the transform analysis and the application

of the approximation techniques to these two relatively simple

models.

Meanwhile, work has also been started on a more complex,

more realistic fault-tolerant system model similar to the one

described in [3]. Kwong has constructed a model for a fault

tolerant system with 3 redundant components, which employs the

Vector Shiryayev Sequential Test (VSST) (see [3]) to identify

and isolate failed components. The model is a 9-state

continuous parameter semi-Markov process. In the system, when

a component is isolated by the VSST, a self-test is initiated

and the component will be brought back into operation when

there are two consecutive no-failure indications from the

self-test. The semi-Markov model can be decomposed into 3

10
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disjoint classes when the failure rate, E, of each component

is equal to zero. The classes are ergodic. Numerical results

for E = 2.5 x 10e-6 failures per second, show that the

normalized probabilities of occupying each state within each

class converge to the steady state probabilities of the

non-perturbed system for each class. Also, the steady state

probability distribution of the non-perturbed system can be

evaluated analytically. Therefore, the state probabilities of

the perturbed system can be approximated analytically if the

total probability within each class is known as a function of

time.

The results of Korolyuk and Turbin's theorem can be

applied to obtain the approximate total probabilities within

each class when time is scaled by a time-scaling factor.

Results of the analytical calculation and of a complete

numerical calculation are compared in Table 1 in terms of the

total probability of occupying each class. As one would

expect, the results are in relatively close agreement, never

differing by more than about 10%. By examining other values

of E, it was empirically found that E > 10- led to

discrepancies in the results. It is of interest to note that

this is just two orders of magnitude smaller than the smallest

decision time rate assumed for the tests (see Table 1).

111



Table 1. Exact Results vs. Approximate Results for Class

Probabilities: 9-State Model

*Model parameters:

Component failure rate: 2.5 x 10- 6 sec -1

-3 -1False alarm decision rate: 10 sec

Detection decision rate: .05 sec -

Recovery test false alarm rate: .05 sec

IRecovery test recovery rate: .1 sec'

Recovery test validation rate: .1 sec

Recovery test miss rate: .05 sec

Probability of Occupying Class

(Exact: top line; Approximate: bottom)

Time(sec.) Class I Class 2 Class 3

4840 .9997001 .0002999 3 x 10
-8.9997000 .0002999 3 x 10

280 .9979038 .0020949 .0000013

.9979022 .0020963 .0000015

600 .9955171 .0044769 .0000061

.9955101 .0044832 .0000067

1200 .9910621 .0089137 .0000241

.9910404 .0089328 .0000269

1600 .9881047 .0118525 .0000428

.9880717 .0118806 .0000477

12
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We have also constructed a four-state model for the

purpose of examining the impact of nonergodicity on the

results. The basic four-state model involves "fast"

transitions between states 1 and 2 with "slow" transitions

occurring between these states and the remaining two states.

All transitions are semi-Markov in nature with second-order

hyperexponential holding time pdf's. Several variations of

this model are currently under study, some with ergodic

classes and some with nonergodic classes. The results are now

being generated and should be available late in the Fall.

We have also partially completed an analytical effort to

circumvent the difficulty discussed in Remark 4 above. This

involves the introduction of a second small parameter into the

description of the process as a time-scaling parameter.

Recall from Eqn. (1) that in order to apply the results of

Korolyuk's theorem or our proposition, the transition kernel

elements of the perturbed process had to take the form:
E
P i h (t/E)

where p is proportional to E for interclass transitions but

is asymptotically (as E -* 0) independent of E for intraclass

transitions. Consider now replacing this form by:

E p ij j t )

where pEij is the same as before. The asymptotic results of

the theorem remain true if 6 is such that 6 = CE with

E C ). This can be seen from Korolyuk's proof [1]. Note

13
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that 6 is now a time-scaling parameter which is small. Now

consider finding asymptotic results as E and 6 approach zero

separately. In effect, this is what we have done with our

modification. We do not have a rigorous proof as yet that the

results are still asymptotically true (except for the case

cited above), but the empirical results so far have all been

supportive. We will expand on this topic in the coming

months.

III. Papers and Presentations Derived from This Work

A presentation was made at the following Workshop:

AFOSR Workshop on Reliability

Skyland Lodge

Shenandoah National Park, Virginia

May 28-31, 1985

The abstract and viewgraphs from this presentation appear in

Appendix I.

A brief reference to this work is contained in a paper

presented at a Conference in July:

B.K. Walker & D.K. Gerber, "Evaluation of Fault-Tolerant

System Performance by Approximate Techniques", Proc. of

7th IFAC Symp. on Identification & System Parameter

Estimation, York, UK, July 1985.

A copy of this paper appears in Appendix II.

14
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IV. Projections for Second Year of Work Kd

Our efforts will continue on the models discussed in this

report. Of particular interest will be the results for models

with nonergodic classes and the efforts to employ two small

parameters in the description of the model. Furthermore, we

expect to be able to analyze some of the smaller models

analytically using a symbolic manipulation program called

MACSYMA. This will allow us to derive closed form transform

solutions for the smaller models which can be examined easily

for their asymptotic properties as the failure rate parameter

becomes small.

We also plan to construct a more realistic model similar

to the nine-state model cited above. This model will use

actual holding time pdf data derived from simulations of

sequential fault diagnosis tests such as the VSST. This will

provide the information necessary to apply the approximate

results that we have derived (or modified) to a realistic

fault-tolerant system model.

In light of the many questions that have arisen as part

of our inquiries (particularly regarding the rigorous

justification for some of our analytical results), we

anticipate the need for further work and hence we plan to

submit a proposal to continue this work beyond next summer.

15
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V. Financial & Manpower Status

The manpower remains as it was proposed. Prof. Bruce K.

Walker devotes approximately 20% of his time to the project,

primarily in a supervisory capacity. Two graduate students,

Siu-Kwong Chu and Norman M. Wereley, work as full-time

graduate research assistants on the project. Margaret McCabe

devotes approximately 10% of her time to the project for

clerical support. No changes are anticipated.

With regard to the financial status, a substantial cost

underrun occurred in the first year of the project primarily

due to the timing of the project. A proposal will be

submitted to carry over the leftover funds into the second

year. Any significant changes proposed for the second year of

funding will accompany that proposal.

16
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DECOMPOSITION OF GENERALIZED MARKOVIAN MODELS CF FAULT-TOLERANT SYSTEMS -

MOTIVATION, PROGRESS AND PROBLEYS

Bruce K. Walker
Assistant Professor

Department of Aeronautics and Astronautics
Massachusetts institute of Technology

Siu-Kwonn Chu
Norm3n Werely

Graduate Research Assistants
Department of Aeronautics and Astronautics

-assachusetts Institute of Technology

These three presentations will summarize our work to date on decomoosition
methods applied to Xarkovian models of fault-tolerant system behavior. Suci
models are very useful as design tools for the evaluaticn of the
reliability _nd performance cf various cult-tolerant system designs.

First, we shall oresent the concept of modelling fault-tolerant system
behavior by Markovian models. We shall discuss the construction of Narkov
models for systems which use on-line fault diagnostic tests of the "single
sample" variety. This will illustrate the generality of this modelling
method and the useful oerformance results which can be generated by such
modlIs. It will also illustrate some of the practical problems that arise
when cemplex systems are considered. We s-all then discuss the extension
of these modelling techniques to systems which use "sequential" on-line
diagnostic tests. This requires the generalization of the modelling
technique to include semi-flarkcvian models. It leads to further
applicability of the modelling method and also to further practical
problems for complex systems.

N!ext, we shall present as an illustrative example the relatively simple
case of a single dual-redundant component with on-line diagnostics which
are used to implement a primary/backup oDerating strategy. The Markov
model for this system will be presented and reliability results will
demonstrate that as the component mean time to failure (MTTF) becomes larqe
relative to the time increment between fault diagnosis testing a
decomposition of the model becomes apparent. A semi-Markov model will then
be developed for this system and similar results will be presented. W'e
shall then discuss our efforts to generate analytical results based upon
the decomposition of this model when the holding time densities of the
semi-Markov model are of a particularly simple yet relevant form (namely
hypergeometric of order 2).

.. . . . . . . . .. 
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Finally, we shall review our procriess sinze last fall on our efforts to
epoly the analytical results cf K(orolvuk an Turbin to our models. Ve
snall discuss the ooin~s at which. ncdels of fault-tcle-an+ systems violete
the sufficient conditicns for 2plication of those results and how the
ccnditions can br, r~laxed or motif ied. V2! snail 1also prmesent somo?
njm izal results t'nat indicate Thne nEed for exteznsinn of some of tne
approxiiations. .esnall discuss our ap:)roa.ch to achievinj suzch ei
extension.

A:. . .



p. .% I

DECOMPOSITION OF GENERALIZED

MARKOVIAN MODELS OF FAULT-TOLERANT SYSTEMS:

*MOTIVATION,

*PROGRESS, A!D

@PROBLEMS

BRUCE K. WALKER, ASSISTANT PROF.

SIU-KWONG CHU, GRADUATE RESEARCH ASSISTANT

NORtMAN M. WERELEY, GRADUATE RESEARCH ASSISTANT

DEPARTENT OF AEFPC,,UTICS 'STRC'I'''TICS

MASSACHUSETTS INSTITUTE OF TECHNOLCGY

CAMBRIDGE, MA 02139

SPONSORED BY: AFOSR
I;GRANT: AFOSR-8L4-0160G T AAFOSR RELIABILITY WORKSHOP

SKYLAND LODGE
LURAY, VA
MAY 29-31, 1985



A OsImPXZ EXAMWI3

A SIMLX WA0-1DWANT INSTNNT WITHI TUX STNI OR SLM

KAS THE VOUWIING 2DWKDhNCY MAAMMSN (PH) POLICY,

S AK INSTWUNT HAS AN XNVE4MNT FAILURE
DMC7XW TEST

* UKZ PRIMAW IXSTEISET IS USXD UNTIL A FAILUE
or Tag PRIMA"Y is MUDcAM, IN ICH CASE
TuE PRIMARY is To3 OrW AND THE A
INSTAWUNT IS USED

* -u PMWUJ OTECTION TESTS as 1TummE OFF
AFTER THE flM INDICAM WFAXM

0 MRE SYSTSM WORKS IP A WO35XNG IWSTMIUNT IS

A 30 0 0 m3 MN= MODEL WILL St D8SWWFPZ FOR THE ADME
AN POLICY. NOlsTE AT A FAILUM 05TICTION MCISION is AVAILABLE
AT EVERY TIM STSP.



EVENIT TE FOR TRANS ITIONS FROM STATE1

(-2Pfa)
(l-2pf) [ AS/AS (1) 5

A5/(A +As) (2)

AS/A- f W o

W/AS (3)

(1-c)Pf (4)

STATE DEFINITIONS

1. BOTH INSTRUMENTS WORKING

2. ONE INSTMJIENT WORING, TE OTHER TURI Or DUE TO AN
INDICATED FAIWU

3. BACKUP COMPONENT FAILED UNCOVERED

4. SYSTEM L0SS

BOTH 1M PROBABILITY OF FAILURE OVER ONE TIME STEP Pf AND THE
PROBABILITY Or FALSE ALAR OVER ONZE TINE STEP Pfa AR SMILL
NWIBERS - TYPICALLY 10 " 6.

SINGLE-STZP STATE TRANSITION PROBAILITY MATRIX

1-2(Pf+Pfa) 0 0 0

2(Pfa.crf) 1-Pf c(-Pf-Pfa) 0
pm

(1-c)Pf 0 (1-) (1-Pf-Pfa) 0

(1-c)Pf Pf Pf+Pfa 1



1st.
class

class

I-0

3rd
c lass

vi-en -

Th ansirti- rn irin



" 1I~y V' ~ ''.9 ~~VVUh ~-

NEW F0 POLICY

o EACH INSTiUENT HAS AN INDEPENDENT SEQUENTIAL
PRIBABILITY RATIO TEST (SPRT) TO DETECT FAILURES

" DOM TESTS RE RESET ON ANY NOMINAL INDICATION

o DECIARE FAILURE OF AN INSTRUENT WHEN ITS SPRT
INDICATES A FAILURE

e THE PRIMARY INSTRUJIET IS USED UNTIL A FAILTRE 
THE PRIMARY IS INDICRTEDA IN WEMH CASE THE PRIMARY
IS TU ED OFF AND THE BAUAP IS US

o THE FAILURE DETECTION TEST IS TURNED OFF AT THE
FIRST INDI.CATED FAILURE

0 THE SYSTEM WOES IF A WORING "IlSTU NT IS BEING
USED BUT IS ROBUST ENOUGH TO SUSTAIN A FAILURE FOR
A "WHILE"

STATE DENITIONS FOR THE SEMI-ARKOY MODEL

1, BOTH INSTRUMENTS WORKING

2. ONE INSTIMENT WORKING, THE OTHER TURNED OFF DUE TO A FALSE
ALARM

3. ONE INSTRMENT WORKING, THE OTHER TURNED OFF DUE TO A
COVERED FAILURE

4. PRIMARY INSTRUMIENT FAILURE- NO INDICATION YET

5. BACKUP INSTRUEINT FAILURE - NO INDICATION YET.

6. SYSTEM LOSS

SEMI-M AM O' TRANSITION DIAGRAM

CASS I

C 3

% .
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-6E =2.5XlO normalized
probabil itie,

unnormalized normalized distribution
probabilities probabilities E =0 ( analytica

state distribution distribution result

1 0.8535 0.8738 0.8738 0.8856

2 0,0708 0.0725 0.0725 0.0658

3 0.0524 0.0537 0.0537 0.0487

total probability
in 1st. class 0.9767 1.0 1.0 1.0

4 0.0030 0.1279 0.1179 0.1250

5 0.0157 0.6786 0.6875 0.6820

6 0.0040 0.1750 0.1783 0.1768

7 0.0002 0.0106 0.0094 0.0093

8 0.0002 0.0080 0.0069 0.0069

total probability
in 2nd. class 0.0231 1.0 1.0 1.0

9 0.0002 1.0 1.0 1.0

At= 4 sec.

time step = 800

,J..

"..



An Approximation (Korolyuk & Turbin, 1976)

Er
Perturbed semi-Markov chain: & (t) with E a small 1

parameter,

State space partitions into mkclasses Elf ... ,f E
where kernel matrix is:

(p. - ~q. for i, j~ E k

1)1

i (%E: qi i E E k ~E r r~k

For each class E stationary distribution r( exists

"~ !t

(always true if each class is Eral.c),

Then: AS E h

(t) Prob y(t) kI

where y (t) is a Markov process representing
class-to-class transition behavior with
mean time to transition dependent on mean

holding times and qij's.

N'

. . - -
. . -'. .
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Problem: Ergodicity of Classes

Typical fault-tolerant system model:

I .,

e( r
*Most models do not have ergodic classes

• Ergodicity is sufficient but not necessary.

* Also sufficient is existence of the inverse operator 40 AtJ C63:

(I - P +

where: P is interval transition probability operator,

is Cesaro limit of successive P operations, i.e.

1, 1 k
n-, nkl

k=l

(generates stationary operator if a stationary

distribution exists)

0 Can check for this existence numerically.



Problem: E dependence

our first case:

P L.(t) =p.. h..(t)

Holding tire pdf nct dependent on £:(which corresponds

to failure rate in fault-tolerant system models).

- -- -- --N

u P

FDI decs'on
evenis

k, (s) L I'Sojourn time from class k to class r,

(Yields Markovian behavior of Y in original

approximation.)



SEMI-MAPX(OJ K5EL FOR THE CUASS TO CLASS PROCESS

q.(s) : Laplace transform of semi-Markov kernel for the process

starts from state i in class Ek and moves to Er

p (s) : Laplace transform of semi-Markov kernel

4()-hA) ('I E E

E L().E* 3 E.

assume (s) is independent of superscript,

then one can deduce

, ..... K. .



WHAT FORM IS (s) LIKE FOR THE MODEL
21

cO () -. (*7 -

assume ,t ,X X have the numerical values such that 7T, l and i

-TT~~ 7 .k~

(s) CC-) 4

• Io

A.

(P ()coes not depend on E (?1
21 -

* * * * md.' - . . . . .

o . A ' ~ .



MATC[hING TIE CONDIT:cNS STATED IN THE PAPER

* propose the semi-Markov process dependng ntwo small parameters E and S

class to class transition parameter

time scaling parameter

as E and S -0

* semi-Markov process.E can be split into disjoint classes of

states E.= tE k
states *41 k

* the sojourn of the process in a given state tends to zero

* * tryin "v'ida~e t'. s.7 lI Parameters method a!ld deduce 'kr(S)



CURRENT WORK

-CONTINUE "SIMPLE" MODEL
%

* NONERGODIC CLASSES

-SMALL ENOUGH FOR ANALYTICAL TRANSFORMS

oFURTHER NUERIAL RESULTS

*USE TWO SMALL PARAMETERS TO EXTEND ANALYSIS OF

LARGER MCrEL

• HAS ERGODIC CLA"E

* FURTHER EXAPLES

*INVERSE OPERATOR CALCULATION (FOR EXISTENCE)

.%
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EVALUATION OF FAULT-TCLEQANT SYSTEM PEOFORMANCE BY APPROXIMATE TECHNIQUES

Bruce K. Walke-

Dept. of Aeronautics and Astronautics, Massachusetts 
Institute of Tecnnolog),

Cambridge, Massachusetts, USA

David K. Gerber

United States Air Force, Williams AFB, Arizona, USA

Abstract. An approximate method for calculating tne statistics of the Performance of

a ut-tolerant system is developed. An approximate method is necessary because the
statistical model of the system Denavior is large-scale and the time horizon of
interest encompasses many cycles of the Redundancy Management logic. In tne
development, a compact representation of the necessary information called the
v-transform is introduced and discussed. Based upon this representation, an

approximation that leads to a very efficient computational procedure is suggested and
numerically analyzed. A very brief discussion of other related work is also
presented.

Keywords. System failure and recovery; reliability theory; Markov processes;
stocnastic systems; numerical methods

1. Introduction optimal design performance will only be achieved

The use of imbedJed microprocessors and other (or approached) if all of the components remain

computational devices in the implementations of operational and the RM function performs

control system designs has given the designer of flawlessly. If either of these conditions are

such systems the freedom to synthesize very complex violated, the system will in general perform less

* control scnemes. The motivation for using such than optimally. This suggests that the

- sophisticated designs is the significant "performance" of the system is not the optimal

enhancement of the system performance which can be performance that is attainable when everything is

7 obtained relative to designs which use very crude working properly out rather is a random variable

control strategies. These sophisticated iesigns which reflects tre occurrence of random component

often involve the use of many sensing and actuating failures and random RM decision errors. The

_ components in an integrated control scheme. The statistical properties of this random

components are often subject to failure or damage, 'performance" value is of great interest to the

and it is often the case that the system designer of the system. It is the calculation of

performance degrades dramatically or even becomes tnese statistical performance properties with

unacceptable or unsafe when one or more of toe which we shall concern ourselves in this paper.

components ceases normal operation. Examples of The computational algorithms which result from th-

such systems include digital flight control systems analysis can be thought of as design tools for ti'

- for statically unstable aircraft (such as the fault-tolerant control system designer.

X-29), the flight and engine control systems for
VTOL aircraft, the attitude and shape control Since component failures and RM decisions can bot

o

systems for large space vehicles, and the control be characterized as random events, one of the
systems of nuclear Power plants. primary steps in the development of a performance

su eevaluation method is the construction of a

The fundamental importance of certain components to stochastic model for those aspects of the behavic-

- the acceptable or optimal performance of the of the system which govern the performance. TherI

control system has led to the incorporation of exist two approaches to this modelling task: the

redundancy and fault-tolerance into such systems, combinatorial method £1] and tne method of

Fault-tolerance may be achieved either by generalized Markovian models [2]. It has been

replicating the hardware components which are shown that the former method is far more unwieldy
subject to faults or by implementing a system which than the latter when it is necessary to account

provides functional redundancy amond its for the time ordering of the random events which

components. In either case, the automatic control may taxe place during a mission [3,4]. Since the

system is then obliged to manage this redundancy by iystem uerformance may be impacted cramatically oy

monitoring the components for faults and selecting such time-ordered events, this makes the latter

the components to be used in real time. This method far more attractive. Henceforth, we snall

function of the automatic system is referred to as assume that the model to be dealt with is of the
Pecumdancy Management (RM). Its inolementation can generalized MarKoVIan type, i.e. that the model is

be as simple is a passive signal selection scheme a finite state Markov or semi-"arkov process whose
from among replicated identical sensors, or as states correspond to the various possible

complex as a sophisticated configuration selection combinations of failure events and RM decision
scheme based on automated logic which utilizes events that can occur. This Paper will emphasize
elements of statistical decision theory. discrete parameter models. Sirilar analyses hold

for continuous parameter models.

The presence in the system implementation of a
Redundancy Management function lends a different When oeneralized Markovian models are used for

meaninn to the concept of system performance. The performance evaluation of realistically complex



systems, a :imens ionaIt ort Cem d'ses. Comolex -nen the operational state of the svste7 is sucr
fault-tolerant systems tend to require many states tnet Tewer than the nominal nuirzer of coroonents
for their accurate characterization. Furthermore, are being used or su." that some of the co-none-:

tne operating time (or mission time for such in use are no longer operating ncrmaily, ther tr

systems tends to be long relative :c the operating system performance is degraded. Depending ,e
cycle time of the RM system. Therefore, tne the history of Such non-nominal Conditions, the
operating times of interest are such that the overall Performance of the system In executing
model must be propagated for many Rw cycle times, task will also suffer. Let s be the integer nie
A .srther Cimensionality probiem is enoendeled by of the state Occupied at time step C by a CIsCre!
tne fa:: tnat the system performance may oe a parameter MarKoV model of the system benavlor.
f.ncti,, of the entire history of failure and RM Assume that J. (s,) is the contribution to the
decision events. Tnese factors all combine to overall systeA performance of occupying state SC
-rcouce an explosion of tee memory size and the at time step k ano that these contributions are
number of computations reouired to evaluate tee Cumulative so that the overall system performance

system performance. Unfortunately, the is given by:
sirmplifi:ations teat are possible by using steady
state analysis of such models are not applicable k.
because the operating time of a fault-tolerant
system tends to oe only a small fraction of the Cost = J
mean time between failure events. Therefore, the 

Cos

transient behavior of the model is of interest k-
while the steady state behavior is not. Clearly, this overall performance value will be a

function of the time history of the operational

in this paper, we discuss some techniques that are state (or OSH, for Operational State History) and.
currently under development that lead to because each OSH is a sample function of a random
abproximate results for performance evaluation. Process, the performance value will be a random
First, we discuss a method for discrete parameter variable. It is Possible to compute the

MarKovian models of fault-tolerant systems that Probability of occurrence of each and every OSH
involves the introduction of a "performance from the single-step transition probability matr'
transform." By approximating the benavior of the P of the Markov model and the initial state
transform, it is possible to generate approximate Probability vector J , which is usually known and
results for the probability mass function of the frequently Consists 2f unity for the probability
ranoom performance value. A means for implementing of initially occupying a state characterized by
this aPoroximation is suggested which makes use of all normal components and zeroes for all the other

an alternative evaluation of the expected value of initial state probabilities. Once the probability
tee performance. Suosequently, a method for of each OSH is known, the entire probability mass
continuous parameter models is briefly discussed function (pmf) of the performance value can oe
which exploits the typical separation of time constructed, and the problem is solved.
scales oetween tie failure event history and the
R oe:'sion history. Unfortunately, the number of OSHs expands very

rapidly with elapsed time. If the model consists
of S states which form a single communicating

class, tnep the number of distinct OSHs may be as
large as S where K is elapsed time since the
mission began. As was discussed in the
Introduction, the elapsed times of interest are

frequently large relative to the RM cycle t:me an:
2. PERFORMANCE TRANSFORM METHOD S itself is frequently large. As a result, the

number of distinct OSHs becomes unmanageably
The behavior of many fault-tolerant system designs large.

- can be captured by a finite state Markov process
with discrete time parameter, The states of such a Fault-tolerant systems frequently have the
mooel represent the various operational states of property that component repair is not feasible
the fault-tolerant system. They are characterized during a mission and hence need not be considereo.
by the operational status of each of the In this case, the system configuration can only

components and by the status of each of the degrade due to failures or incorrect RM decisions
automatic fault diagnosis tests. For example, a Also, all fault-tolerant system models include a
typical state in a model for a fault-tolerant state that represents configurations which are so
inertial measurement unit would be characterized degraded that they are unacceptable. This state -

by the gyros and accelerometers which were still the system loss (SL) state, and it is a trapping
working, those that had already failed, and those state when repair is not possible. These
that had been eliminated from use by the RM circumstances lead to a situation where the numbe

function (note that the latter two sets need NOT of distinct OSHs that a system can exhibit is not
be identical) plus the status of all of the fault exponential in the number of states. It is
detection and isolation tests which the RM logic sometimes possible to snow that the number of
uses. If it can be assumed that the time of distinct OSMs is bounded by a linear function of
failure for each component is exponentially time. Nonetheless, even in the latter case, the
distributed land hence is generatec bvta number of OSMs quickly grows to a value chat is
memoryless process) and that each fault beyond the memory capability of even large

diagnostics test operates only on instantaneous mainframe computers. This motivates the search

data (and is therefore also memoryless), then the tor approximate methods to coroute the statistics
various combinations of failure events and test of the system performance. we snall now present
outcomes can be formed which represent transitions such a method.
of state for the system. If the proDabilities of

these transitions can be derived, then the state Consider a finite state Markov model of a
oe'initlons and the transition probabilities taken fault-tolerant system comprising N states, one of

together constitute a MarKov model for the which, namely sN' is the SL trapping state.
evolution of the system configuration. These Associated with the occupancy of each state for a
models nave been used extensively in recent years single time step is an integer-valued performance

for the calculation of the reliability of measure. The assumption of integral values here
fault-tolerant systems [5,6,7,8]. s not restrictive because a general performance

iv
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measure can .e resolved to the integers by behavior of the performance valve can therefore be
discretizing ts ialue. At this point, le shall made even more compact by comoining terms in tne
also assume that t-e performance values ire polynomials. This orocedure eflectvely merqes
time-invariant. If t ey are time-varying, the OSHs 4nose beginning and ending states are the
algebra becomes considerably more Cumoersome, but same and wnose cumulat've perfornance values are
the results cited below hold except wnere the identical. The propert-es cited above 'or the
assumption of time-invariance is explicitly v-transform remain in force atter *nis :omOnation
mentioned. If J(s ) again represents the of terms.
performance value Incurred by occupancy of state s
at time x, we nave that: The matrix of v-transforms for all starting and

ending states is lenoced M(v,eI. its propagationkf . in time is governed by the difference equation:

k (vzi ) Vk (V) N (V) k)
where k is the length of the mission expressed in
number 3f time steps. This performance value is
random because the OSH followed by the system is wnere V (v) is the single-step v-transform update
random. Clearly, if we can calculate the matrix ffective at time step K. V.(v) is
probability of each OSH that the system can constructed from P by multiplying ech row of P by
follow, then the characterization of the pmf of v raised to the power of the performance incurred
the system performance value will be complete, by occupancy of the corresponding state for one

tiem step at time k. If these performance values
A typical OS over k time steps takes the form: are time-invariant then V (v) reduces to V(v) and .

the difference equation becomves:

which is a list of the states occupied by the
system at eacn of the k time steps. Here, the
system initially occupies state j and it occupies
state i at the k-th time step. Suppose there are The combination of terms described earlier can be
ti (k) such OSHs, all beginning in state j and applied at each time step to reduce somewhat the
ehgng in state i at th k-th time step but number of terms in the polynomials comprising
traversing many different states in between. For M(v,k). Note, however, that the problem of
the l-th such OSH, let its probability be given by keeping track of a large number of OSHs has not
p4 (1,k) and the accumulated value of performance been eliminated but merely converted into the
bdJtenotea J..(l,k). We define the performance problem of keeping track of a large number of
transform or

4
-transform for this OSH as: polynomial terms.

2y successively applying the difference equation,
)/, . we can generate the v-transform matrix M(v,k ).

( The v-transform of the performance of the system

p1rnk j (').k ass uming it started in state j and did NOT reachsystem loss during the mission is then given by:
TN-I

The v-transform is a ccmoact way of reoresenting W ( ii _ ( b )
the complete statistical characterization of tte M i3 V) Q
per'oriance of the system. Among its properties -

are the following. If we set v to unity in the
v-transform, we obtain: SInce it is frequently the case that the system is

known to begin the mission with all components -
ooerating and no fault detection alarms, it is
often true than that the v-transform of the system -

) performance over the mission is given by W1(vk ). =
I |This v-transform completely represents the pmif

the system performance, which was the desired -

wnich is the probability of reeaching state i from result. However, it still suffers from the memory
state j in k time steps, i.e. the multisteo difficulties associated with keeping track of a
transition probability from state j to state i. large number of polynomial terms in generating it.
If we differentiate the v-transform with respect An approximation will now be discussed that

*to Y and then set v to unity in the result, we circumvents this difficulty.
obtain:

Assuming once again that the performance values
are time-invariant, let r be a row vector of the N
vaues of performance :ncurred by occupying each

i of the N states for one tine step. Let R(k) be
the row vector of expected performance after k
time steps starting from each of the N states of

which is the expected value of the performance the model. Then, the theory of Markov processes
after k time steps. This moment-qenerating with rewards ,10] yields the following result:
property of the v-transform extends to all higher
moments of the performance value as well.

Because the performance values associated with R W r Z P
occupancy of each state are integer-valued, the ri5
exponents in the v-transform are integers.
Therefore, the v-transform is always a polynomial Because state N is the SL trapping state, the
in v. The v-transform representation of the elements of Q(k) all tend toward a steady state



asymptote which is linear with a slope of r

Consider this value for a moment. It i.tile of less accuracy. This traCeoff is aso examined

performance value :ncurred for occupancy of tne SL briefly in toe next Sectiln.

state for a single time step. Note, however, that

to the system designer, the fact that the system
has reached the system loss state means that the

system is no longer capable of operat:ng.
Therefore, its "performance" upon reaching this

level of iegradation is irrelevant. Hence, the
value chosen for ra is irrelevant except to the 3. Results

benavior of R(k). In lignt of this fact. we:noose rj equal to zero to avoid a steady state ntiSeioebrflsuarzsoe-'
increae )fn the values of R(k). numerical results for a 50-state ooel of a

fault-tolerant system. The overall system is

Let us consider again the interpretation of R(k). assumed to comprise sn actuator subsystem and a

The elements of R(k) are the expected values of sensor subsystem. These two subsystems are

the total accumulated performance over k time identical in their redundant architecture and

steps starting from each of the model states at their RM iogic but are ctmpletely independent

time 3. Since the system usually starts from Otherwise. The Marxov model 'or one subsystem is
state 1, let R,(k) be denoted 3(j). This is the shown in Figure 2 wnere 0 represents a correct "

expected perfofmance over K time steps for ALL detection of a failure, D represents a "misseD" -

OSHs beginning in state 1, including those which detection, 0 represents a false tetect'on, "

end in state N, the SL trapping state. Note represents the isolation of a failure following a -

again, however, that OSHs ending in the SL state detection, I represents no isolation following a
are not of interest in performance evaluation detection, and I represents the isolation of the

(except in the computation of toe system wrong component following a detection. Table I

unreliability). Therefore, (k) can be decomposed lists the values of the conditional probabilities

into two parts: the portion 7, (k) whicn is the of these events for each time step that were

expected performance fo s OSHs not ending in assumed. The actuator subsystem was assumed to

the SL state and therefore of interest, and the consist of components whose mean time to failure -

portion , (k) which is the expected performance was 25 hours. The sensor subsystem components -

accumulat#h by those OSHs ending in the SL state were assumed to have a mean time to failure of 00_

and therefore not of interest. Figure I hours. The time step, which corresponds In such

illustrates the relationship between these three models to the time between successive failure

quantities for a typical example. Note that the detection tests, was assumed to be I second. The

mission time x is typically snort relative to the performance associated with occupancy of each of

t-me it wni cn he expected performance behavior the states of the model was based in the case of

approaches steady state, the sensors upon the acnievaole accuracy of the
estimation of a three-dimensional quantity

• With rN set to zero, it is a -elatively easy measured by the sensor array. A failed sensor was

oatter to generate the elements of R(k) for any k assumed to produce a measurement with an

Z and, in particular, to generate Rik ). This can acditional error of 3 relative to a good sensor

be done using modal decomposition Ei] or any other wnere is the standard deviation of the random

numerically well-Demaved algorithm. R(k ) can e--or in the measurement from one sensor. The

then te used 'n the following approximation actuator performance values were scaled up from

scheme. Note that R,(k ) is an upper bound for --e sensor performance values to reflect the
the expected performance accumulated over time ncreased importance to a control system of the

steps beginning from state i and is therefore also uctuators. Oetails on the model construction can

an upper bound 'or the expected performance to be De found in [9].

acoumulated over n k. time steps beginning from
state i. Consider a' time step k at wh!Ch we nave When the two independent models are combined, the

generated the v-transform matrix M(vk) whose overall system model consists of 49 operational
element is m;.(vk) which in turn states plus a SL state for a total of 50 states.

i s an-tii fr eOf course, in this particular case there is no
asslmed that terms with like exponents nave need to combine the subsystem models into an

already been combined. The approximation we shall overall model in light of their independence.

use is produced by neglecting all such terms in However, we do so here in order to demonstrate the Z
m..(ne) that are such that: oopltcability of our method to large models, which

are typical in the field of fault-tolerant system -

A [b+ < performance evaluation.

The results described here were generated on a

This has the effect of discarding all OSHs at time modified Hewlett-Dackard 9826U microcomputer. The

k which are expected to have a small contribution major limitation was the limited amount of memory

to the statistical properties of 'le performance available for use. As a result. results could

over the mission. Note that OSHs that nave only be generated for the 50-state model up to 111

accumulated only a small performance value jo to time steps when the tolerance was very small. It

time k and have a small probability mignt still be snou1j Ie noted, ho~e,er. that ii !l time steps
retained by this approximation if 't is expected as many as 30,000 OSHs must oe Kept track of even

that they will accumulate a large oerformance after merging those that have the same ending

value during the remainder of the mission. This states and same performance values. A computer
makes *he approxlmation much less risky than with virtual memory allows for much longer runs.

discarding all OSHs wnose contributiOn to the Nevertheless, the -haracteristics exhibited by the
exoected performance at t-me K is small without results after Ill time steps are sufficient to
regard to what their future contribution might be. illustrate the 'nsignt that can be gained from a

performance evaluation tool.

:n the next Section, a rule of thumb *s suggested
for setting tne tolerance value aoearinq in the Figures 3, 4 and 5 illustrate the effect of the
approximation. Note that larger tolerances result tolerance level in the approximation on the

*n more discarded terms and nence less results. Each is a plot of the ccmouted

ccmputational effort and memory burden at a cost performance omf after 150 time steps for a 7-state
model which is similar in scope to the 3-state
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ioCei for eacn of -he subsystems descr'bed above. 5. tonclus'on
The probability axis (vertical) on each plot is
logarithmic. The point at wnicn the tolerance :n tn's paper, we nave brief'!  escrloed some
begins to have a profound effect.on the r~sults 'S a~proxmate :ec'n1oues 'Zr evabla7-g t1'e
at a tolerance level between 10O and 10

- 
. The stat:st'zxl properties of t-e Zer'crmance af

total expected oerformance for this system at 150 'ault-tolerant :ontrol systems. As s cn systems
time steps (i.e. the expected value of the come into oer ase. the ava1''ail'tj )r ies'gn
performance accumulated by OSHs up to tnis time tools based upon peraormance evalbtian teciniques

point without regard to whether or not they nave will e 'ncreasingly important. -he 'et~od
reached the SL state) is 62.?. Hence, the cescr'oed tere c'rcumvents tre di'f'calty of
performance pmf results begin to break down wnen d'mensionality encountered Oy strx'gntforward.
toe tolerance reaches a value approximately 4 comopnatorial and 4areovian tecpniques by
decaces below the total expected performance for introducing the v-transform lepresentat'on and
tne mission (which can be calculated easily by the then ising 7t to suggest an aDproximate
Mareov process with rewards result). In all of simolification onici 'nc-eases :onsideraolv the
the results generated in this Stady so far, this efficiency of tne performance evaluacton algorithm -

nas oeen a good rule of thumb: Set the tolerance for large-scale mooels witlout sacr'fic'ng
at least 0 decades below the total exoected significant accuracy. Some numer'cal results
performance to avoid inaccurate results for the illustrate a rule of thump fo ising the algorithm -

approximate performance pmf. and illustrate some of the useful performance
properties that result.

Returning to the 50-state model, the value of its

expected performance at 350 time steps is 4560.
By the rule of thumb above then, the tolerance
snould be set no larger than 0.4 to generate Acknowledgment
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